Assignment Schedule: Fri (in-class) – Test Prep 1 Fri (Canvas) – Welcome Survey Tue (Webassign) – HW 1

Today: Motivating Examples and Slope Fields

 $\frac{dy}{dx} = rate...$... and rates are everywhere!

a) Populations, Savings Accounts, Newton's Law of cooling, Mixing Problems, melting ice (see handout from last time) Warm up: You have \$5,000 invested. You are told the account typically earns around 2% a year in interest. A(t) = "amount in account after t yrs"

How could we model this with a differential equation?

b) Free-fall (no air resistance):

$$mv' = F_g = -mg$$

Initial Value Problem (IVP)
 $v' = -g$
 $v(0) = 0$

c) ...with air resistance

$$mv' = F_g + F_A = -mg - rv$$
$$v' = -g - \frac{r}{m}v$$
$$v(0) = 0$$

d) Mass-Spring Example:

Force =
$$-kx$$

 $m x'' = -kx$
It turns out that one solution

to this is $x(t) = cos(\omega t)$

Slope/Direction Fields

Recall: $\frac{dy}{dx} = slope$

We can visualize slope!

Example 1:

$$\frac{dT}{dt} = 0.5(60 - T)$$

	T=0	T=30	T=60	T=90
t=0				
t=10				
t=20				
t=30				

Slope field tips

- 1. Find when slope = 0
- 2. Find when slope is undefined
- 3. Find when slope is pos/neg.

Example 2:

$$\frac{dy}{dx} = -\frac{x}{y}$$

	y=-1	y=0	y=1	y=2
x=-1				
x=0				
x=1				
x=2				

Given an initial condition in the slope field, we can roughly sketch what the solution curve might look like.

See handout with many examples:

sites.math.washington.edu/~aloveles/Math207Materials/SlopeFieldEx
amples.pdf

And feel free to play around with this basic slope field plotter (made my one of my TAs several years ago):

http://slopefield.nathangrigg.net/