Assignment Schedule:
Fri (in-class) - Test Prep 1
Fri (Canvas) - Welcome Survey
Tue (Webassign) - HW 1

Today: Motivating Examples and Slope Fields

$$
\frac{d y}{d x}=\text { rate... }
$$

... and rates are everywhere!
a) Populations, Savings Accounts,

Newton's Law of cooling, Mixing
Problems, melting ice
(see handout from last time)
b) Free-fall (no air resistance):

$$
m v^{\prime}=F_{g}=-m g
$$

Initial Value Problem (IVP)

$$
\begin{aligned}
& v^{\prime}=-g \\
& v(0)=0
\end{aligned}
$$

c) ...with air resistance

$$
\begin{gathered}
m v^{\prime}=F_{g}+F_{A}=-m g-r v \\
v^{\prime}=-g-\frac{r}{m} v \\
v(0)=0
\end{gathered}
$$

d) Mass-Spring Example:

$$
\begin{aligned}
& \text { Force }=-k x \\
& m x^{\prime \prime}=-k x
\end{aligned}
$$

It turns out that one solution to this is $x(t)=\cos (\omega t)$

Slope/Direction Fields

Recall: $\frac{d y}{d x}=$ slope
We can visualize slope!
Example 1:

$$
\frac{d T}{d t}=0.5(60-T)
$$

	$\mathrm{T}=0$	$\mathrm{~T}=30$	$\mathrm{~T}=60$	$\mathrm{~T}=90$
$\mathrm{t}=0$				
$\mathrm{t}=10$				
$\mathrm{t}=20$				
$\mathrm{t}=30$				

Slope field tips

1. Find when slope $=0$
2. Find when slope is undefined
3. Find when slope is pos/neg.

Example 2:

| $\frac{d y}{d x}=-\frac{x}{y}$ | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | | | $\mathrm{y}=-1$ | $\mathrm{y}=0$ | $\mathrm{y}=1$ | $\mathrm{y}=2$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{x}=-1$ | | | | |
| $\mathrm{x}=0$ | | | | |
| $\mathrm{x}=1$ | | | | |
| $\mathrm{x}=2$ | | | | |

Given an initial condition in the slope field, we can roughly sketch what the solution curve might look like.

See handout with many examples:
sites.math.washington.edu/~aloveles/Math207Materials/SlopeFieldEx amples.pdf

And feel free to play around with this basic slope field plotter (made my one of my TAs several years ago):
http://slopefield.nathangrigg.net/

